AD708691

AN ALGOR ITHM FOR FLOATING-POINT ACCUMULATION
OF SUMS WITH SMALL RELATIVE ERROR

BY
MICHAEL MALCOLM

STAN-CS-70-163
JUNE 1970

b

Reproduced Ly the This document has been ”T’prq\Od
CLEARINGHOUSE e rolaagse and sale; 18

for Federo' Scientific & Technical for public releas :

information Springfield Va. 22151 distribution is unlimited.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

i
”’—‘?T‘FTM\ e
\“) L 20 1970
mn
i
H‘

AN ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS
WITH SMALL RELATIVE ERROR

by
Michael Malcolm

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

The preparation of this report was sponsored by the
Office of Naval Research under grant number NOOl3-67-A-
0112-0029, the National Science Foundation under grant
number NSF GJ L08 and the Atomic Energy Commission under
grant number AT (0L-3) 326,PA 30.

s

T WOy Tt e

—

I. Introduction

Many algorithms require the calculation of a sum

where X)sXpyeeesX aTeE numbers represented in floating point. 1In
practice, an approximate sum § is computed with rounding errors.
Wilkinson [1] shows that if the sum is accumulated in a single-precision
accumulator (using floating binary arithmetic with t bits of precision

and proper rounding), then

where

)n+l-r t)n+l-r

@-e™ <l+n < (1+2” (r=1,...,n) .

Thus the error bound is dependent on the order of summation. This
result has led to the well-known rule of thumb that it is usually best
to add a list of numbers in order of increasing magnitude. If one has

a priori knowledge of the x, (e.g.,). |xi| < 1) or if the accumulation

i
is performed with more precision (say double .precision), then much smaller
error bounds can be found. However, as Wilkinson points out, "It should
be emphasized that we still cannot guarantee that an accumulated sum ...
has a low relative error."

Large relative error in an accumulated sum is often the result of

a phenomenon which Professor D. H. Lehmer calls catastrophic cancellation.

This occurs when an intermediate partial sum is much larger in magnitude

than the final sum. Then one or more additions result in a loss of

!

B

significant digits. The post-normalization step of a subsequent

addition thus introduces zeros in place of significant digits.

However, as Professor William Kashan has observed, this large cancellation
is not the cause of the error -- it merely reveals the error. That is,
the real villain here is not the cancellation, but rather the large
intermediate sums within a floating-point system of given precision.
Perhaps "catastrophic loss of precision” would be a more appropriate
name. Catastophic cancellation is fairly common with poorly designed
algorithms; most good algorithms have bullt-in precautions which avoid
(or usually avoid) thic phenomenon.

Large relative errors can occur without catastrophic cancellation.
This happens in large summations (n >> 3) where the intermediate sums
become much larger in magnitude than the individual addends, but not
larger than the final sum. This sort of error can occur in numerical
integration using a large number of intervals. Wolfe [2] proposed a
technique for avoiding this type of error. It is described in the
following section.

In the remainder of this report, a modification of Wolfe's algorithm
is presented, followed by a detailed error analysis. This algorithm has
the advantage that the final sum is guaranteed to have a very small

relative error.

I1. Extended Summation With Cascading Accumulators

Wolfe [2] suggests a technique which is easily programmed and requires
only a small number of additional storage locations. These extra locations,

called cascading accumulators, are denoted bty sl, 82, The separate

accunulators hold sums that are in various intervals; for example,

2

1.000 < c(sl) < 9-999
10.00 < c(s2) < 99.99
100.0 < c¢(s3) < 999.9 4

where c(si) denotes the contents of si . The summing is done at

the lowest level accumulator (sl) until it is about to overflow.

At that point it is added to the next accumlator (s2) and reset to
z2rc. Similarly, if s2 1is about to overflow, it is added to s> and j
reset to zero, and so on.

By this technique the intermediate sums never become much larger
than the addends. However, catastrophic cancellation can occur just
as before. Wolfe does not discuss how to go about summing the accumulators
at the end; in an example he uses the order of increasing magnitude.
For certain problems, this is a useful technique; however, there is no

guarantee that the final result has a small relative error.

III. A Modification of Wolfe's Algorithm

The following algorithm requires little if any more execution
time than the algorithm of the last section, and nearly full-
precision accuracy is achieved, provided exponent underflow or overflow {
do not occur. Such exceptional conditions are normally brought to the ‘
attention of the user by the system software and, if so, inaccurate
results cannot go unnoticed. As in Wolfe's algorithm, additional

intermediate accumulators are used -- typically fewer than 50.

The following discussion assumes the algorithm is implemented
on a machine using a floating-point number system F of base B
(usually B is 2, 8, 10 or 16) with a t-digit mantissa. The

exponent e 1is assumed to lie in the range
=-m S e S M .
Thus each nonzero xe¢F has the normalized representation

e
X = i odldenoodt * B ’ (l)

where d.,...,d, are integers satisfying

g t

lsd Sa'l’

1

Osd SB'l (i=2,...,t) .

i

The number O belongs to F , and has the structure
O=OOO'O-O'B-m .

All floating-point addition is assumed to be normalized. The machine
may do either proper rounding or truncation (chopping).

To facilitate discussion, the function fev (similar to that used
by Mpller [5]) is defined as follows: If xeF then fev(x) = e+m .
tev is the biased exponent having the mnemonic "level". Note that (lev
is a function o the representation of a number and not the number
itself. For example, suppose x 1is to be added to y , where |y| > |x]|,
and that x must be unnormalized during operand alignment. Suppose also

that no nonzero digits are lost fram the mantissa of x while it is being

unnormalized. If we denote the unnormalized representation of x by X,

then x and X both represent the same real number exactly, but

tev(R) > tev(x) .

4
§
1
1
3

n
The algorithm for computing Z X; can now be described as
i=1

follows. There are two positive parameters, ! and 17 :

Assume there are mt+l accumulators, the contents of which are i

denoted by ao,al,...,an A 1

1. Set each of the accumulators tc zero.
2. For each x, form a’il’a'ie";"aiq (@ >1) , where

a,.ta, . t...+a =X and each aij has the property

11 "42 1q
= = =)
that the last ! digits are 0 (i.e., A _pyg =Qp_p = +o0 = /
dt = O)o
3. Each a, j is added to the k-th accumulator, where k 1is

determined by

vk < lev(aij) <vk+y-1 ,

(2)
vel (M+n+1)/(n+1)7]
where [¢7] denotes the smallest integer not less than ¢ .

(Thus
K = lev(a.ij) v o, (3)

in the sense of Algol €0.)

4., The accumulators are summed in decreasing order (100

M 0-1,...,0) .

The second step appears, at first sight, to be quite complicated.
However, in practice it is easily done, especially on a machine with
double-precision arithmetic. An illustration of this in Fortran for
the IBM System/360 is contained in Section VI.

The parameters { and 7 are chosen so that the addition in step 3
retains all the significant digits involved. That is, until step 4, there
are no rounding errors. More insight into choosing [and 17 will be
given in the following section. Also, an important restriction on the
magnitude of the product aqn will be revealed.

Step number 4 is certainly the most interesting step of the algorithm.
If, instead, the accumulators are summed in increasing order (as one is
tempted to do after reading Wilkinson [1]), catastrophic canceilation can
occur. When this algorithm is incorporated in an innerproduct routine, it

oftten happens that

where lev(B) - fev(E i) >t . Summing in increasing order will yield O .
However, as D. Jordan pointed out in [U4], summing the accumulators in
decreasing order (7,...,0) precludes the chance of this type of error.
The remaining question is: Does summing the accumulators in decreasing
order lead to some other case where a large relative roundoff error can
occur? The answer to this question is no. Proof of this assertion and

e sharp iound on the roundoff error are given in the next section.

IV. Error Analysis

Another convenient function is defined as follows: Let xeF be an
approximation of some real number x . If x = x* and x* #£ 0, then
pa.d(x,x*) is defined to be the number of digits by which the mantissa
of x can be shifted to the right before a significant digit is lost
(i.e., before a non-zero digit is shifted out of the low-orde. position).
If x £ x* » then pa,d(x,x*) is negative, and defined as follows:
suppose x has the representation (1); if there exists a { such that

§ can be represented as
P ~ e_t a a
{ =+ .4,d,...d, 8B with dT,éo, dl,éo

*
and x+8 =x and T is finite, then pad(x,x) is defined to be -T .
Otherwise, pa.d(x,x*) is defined as -« . For completeness,

pad(0,0) = . For example, if B =2 and t = 6 , pad(-.101000 -23

)'510) =3 .
If x =+.111111-2° and y =+.111111 -2, and ® reprosents “loating-
point addition, and pad(x®y,x+y) = -2 since twc digits are lost during
*
the floating-point addition. When pad(x,x) is positive, the mantissa

of x has a "padding" of zero digits at the end.

It follows that

*
pad(r,x") 20 © x=x",
¥* *
pad(x,x) <0 @ x f£x ,

*
pad(x,x*)_>_t » pad(¥)X) =@ ® X=X =0.

In step 2 of the algorithm, it is required that pa.d(e,ij,aij) >0 >0,
for al1 i,J .

It is also expedient to define
* *
p(x.x) = lev(x) + pad(x,x) . (L&)

*
p(x,x) 4s invariant with respect to operand alignment (un-normalization)
and post-normalization of x , provided no exponent underflow or overflow

occurs.

Lemma 1: If x and y are two floating-point numbers and @® represents
floating-point addition, then
* * * ¥*
p(x®y,x +y) >min{p(x,x),p(y>¥)} »

provided no exponent underflow or overflow occurs.

Proof: Assume fev(x) > lev(y) . Let 2z denote an accumulator,
a floating-point number with a t+2 digit mantissa and an
overflow digit. Set 2z -y and, if necessary, unnormelize =z
so that fev(z) = lev(x) . The accumulator z can be treated

as a floating-point number if one ignores the overflow digit and

i

considers only the first t digits of the mantissa. In this
way, pad is defined for z . Let w denocte another
accumulator with the same structure as z . Set w ~ z+x .

Prior to the post-normalization step in forming w ,
tev(w) = tev(z) = tev(x) and
* % * *
pad(w,x +y) Zmin{Pad(z:Y):Pad(x)x)) ’

and equality occurs whenever the low-order digits of x and y
don't cancel. From Equation (4) and the fact that

* *®
p(w,x +y) remeins unchanged during the post-normalization

step, it follows that
* * ¥* * ¥* *
p(x®y,x +y) =p(w,x +y) >min{p(z,y),p(x,x)} .
¥* *
Since p(z,¥y) = o(¥sy) »

* * * *
p(xDy,x +y) Emm{P(x:x Yso(¥,y)} .

-

- =

Lemma 2: In the notation of Section III,

D(a-k:a;) >Ve+ L.

Proof': Any term (y) that is added to the k-th accumulator satisfies

tev(y) >vk and pad(y,y) >t .

By Lemma 1, Equation (L4) and the fact that p(0,0) = » , the lemma

follows by induction.

Lemma 3: If o #0, and N is the number of 8y added to the

accumulators, then

vk < lev(ak) < v(ktl) -1 y if N=1

vE-t+2+1 < tev(a) < v(ktl) + LlogB(N-l)J , if N>1
(k = O,l,...,'ﬂ)

where Lg_l denotes the largest integer not greater tanan ¢ .

Proof: The inequalities for N=1 are obviously the same as those satisfied

by a single term added to the k-th accumulator. The uppar bound
for N >1 1s found by considering the largest number (;) which
can be added to the k-th accumulator, i.e.,

{ = +.22...200...0* Bv(k+l)-l-m y (z = B-1)

LT]

Lemma 4: Ir N <p!™v"

and observing the lev(ak) during repeated additions of { to o -

If the lower bound for N > 1 were not true, i.e., if
lev(ak) <vk-t+2+1 ,

then, by Lemma 2,

*
pad(ak,%) 2t » o =0,
which is a contradiction.
s » then each of the o (k = 0515%+4,T) is

exact.

Proof': By Lemma 3,
lev(ak) <vk+e+1l .
Combining this with Equation (4) and Lemma 2 gives

*
Pﬁd(ak:ak) >0 ,

which, by the definition of pad , implies ak is exact.

Loss of precision in an extended summation can result from either
1. repeated truncations (roundings) of the sum, or

2. post-normalization left shift of the approximate sum.

The post-normalization error can be formalized as follows: Let the

accumulation of the floating-point sum

3

where the x, (1 = 1,2,...,n) are exact, be defined as

v, =0

‘V =¢ @x (i=l,2,--.,n) ’

i-1 - B

The function A of two floating-point variables is defined as
Alx,y) = max{fev(x),fev(y)} - tev(x®y)

Thus, during post-normalization of the flcating-point sum x®y ,
the mantissa undergoes a left shift of A(x,y) digits. Clearly, if
a carry occurs, A(X,y) = -1 . Also, A(x,y) >1 only if
|tev(x) - tev(y)| <1 .

During the formation of \yi = wi-l@xi , any truncation error

alread, present in the low order digits of ‘l’i-l is multipiied by

Al _45%;)
B : 7 R § :

The accumulators are summed in decreasing order. Thus, the sum

S. can be defined by

0
S'ﬂ'\"l =0
Sk = SHIG% (k = T]-'n—l,..-,O) . ())
Lemma 5: If 8,,, is exact and lev(sk+l) < lev(ak) and if S, .,
is un-normalized so that lev(Sk+l) = lev(ak) , then

* -
pad(S,,,S,,,) >0 , provided N < gt~V

Proof: Lemma 1 and Equation (5) yield

p(sk"'l, Sk"‘"l) 2 min{p(aki'l’ak+1)’p(ak+2’ak+2)’ LB -:9(‘1“;0.”) })

v

which, with Lemma 2 and the definition of p , gives

lev(Sk+l) + Pa'd(sk+l’sk+l) S>vu(ktl)+1 .

Substituting !ev(ak) for !ev(Skﬂ_) and using Lemma 3, we

obtain the desired result:

*
pad(8, 1,8, ,.) > ¢ - LlogB(N-l)_I

Suppose that, in the process of summing the accumulators as
lescrited by Fquation (5), k = j is the first k such that
, * -
pad';.‘:k,sk) <0 . As a result of Lemma 5, the truncation (rounding)

erro. in adding Sj 41 ana aj must be caused in one of three ways:

*
i) When the operands are aligned, pad(aj,aj) =0 and a carry
oceurs.

ii) When the operands are aligned, pad(S =0 and a

S
ISELATSY
carry occurs.

iii) lev(Sj+l) > Zev(ozj) and, when <, is aligned so that

J

¥*
lev(ozj) = 2ev(SJ.+l) , pad(aj,aj) < - A(SJ. < 0

+l)aj)

Lemma 6:

Ilev(Sj) Svi+i+l,

Proof': Case i) In the aligned position, using Lemma 2, we find that
*
tev(,) = plO,,Q,) >vjt+t!

Thus fev(S,) = lev(aj) +1>vj+i+1.

5)
) * M *
Case 1i) lev(Sj+l) = p(sj+l’sj+l) Zmin{p(a,j+l’aj+l)’""p(a'ﬂ’an)}

>2vitvtl

13

Therefore lev(Sj) >vjtvtl >vj+e+l.

Case iii) When OLJ. is aligned, tev(S

Now,

tev(Sj) lev(SJ.+l) + A(S

3+1%)

> lev(SJ.+l) > lev(aj) =vi+t .
Thus,

lev(Sj) Svj+t+l .
Since !ev(a]._l) <wvi+ L logB(N-l) _] .

lev(SJ.) - lev(aj_l) >2+1- LtogB(N-l) 4 .

The assunmption in Lemme 4 (i.e., N < B!-vi-l) is sufficient to guarantee

that lev(sj) -lev(ozj_ > 1, from which it follows that A(Sj’a*-l) —ar

1)
Similarly, each of the subsequent additions can undergo & post-
normalization left shift of at most one digit. In fact, at most one of

the additions

Sk = sk+l @a}{ (k = j-l,j-e,.-.,O)
will undergo a post-normalization left shift of one digit.

verma 7: If N < BI'Wl » the mantissa of each of the accumulators

a Q. 1is shifted at least t digits during operand

J-A1%g-n-21-0%

alignment. where

SNV (€)

14

j+1) = tev(aj) > p(aJ,cx;) >Svi+e .

.

Proof: By Lemma 6,

lev(SJ_i) Svi+tt 5, (1=01,..0,3) -

By Lemma 3,
tevia,) SV(I-D * 2+1 , (1=0L..00) t
) - = K k+ e .
and lev(SJ_i+l) lev(aj_i) >vi-1>t , (i JANLy ey d)
Thus the mantissa of each of the accumulators « ;j-h’a -2 7" ,ao p

is shifted at least t digits during operand alignment.

Theorem 1: If N < al'\ﬁl » if the accumulator used in accumulating SO

has at least t+1 digits, and if no underflow or overflow occurs,

then the absolute error in So is bounded by ¢

tev(s,) -m-t+1
|s - so| <ABB ,

where

[

for chopped arithmetic

]§ for rounded arithmetic

and A 1is given by Equation (6).

Proof': Since a post-normalization left shift of at most one digit can
occur only once while the accumulators are summed, the worst case
occurs when it is caused by the addition of aj-k (see Lemma 7).
Subsequent additions of a:j-k-l’a g e ol

value of So (see Knuth's [6] discussion of prcblem 5, page 498).

cannot affect the computed

Prior to the addition of « SN 7 a maximum of A truncations (roundings)
: lev(So) -m-t

B or less.
Q.E.D.

can occur, each resulting in an error of

15

For machines which use t-digit accumulators and chopped arithmetic,

2 -m-t+1
the error bound is (A-1) ev(So) -

(a stronger result!). Note
that, although the above theorem gives a bound on the absolute error, it

also provides a bound on the relative error. Specifically, if the true

value of the sum s is zero, then So =0.

Theorem 2: If N< al'\ﬁl and no underflow or overflow occurs, then

5§ = So(l+e) ’
where

le] <rep®"

Proof: i) If S0 = 0 , then, since total cancellation of significant

digits cannot occur in summing the accumulators, s =0 .

ii) 1f 8, # 0, then assume s-S, = Sot + By Theorem 1,

0
lev(S,)-m-t+1l
s -55) = Il 1e] sass’*)™

lev(So)-m-l
Since |Sy| >B ’

le] < repSt

These theoretical results are substantiated by an experiment
reported by D. Jordan [4]. Jordan used this technique for accumulating
innerproducts on an IBM 360 (B = 16, t = 14). He chose W =32, 1t =6

and q@ = 2 , and states:

16

T DY e

"Empirical tests were run to determine the small amount of roundoff
that might be expected from the procedure. The tests used 1000
dot products of 15-camponent vectors where the components were
randomly generated in the range (-1050 ’ lO5 O) . The results of
this routine were checked against results obtained using 256
hex-digit arithmetic chrough the multiple precision arithmetic
package written by J. R. Ehrman of SLAC. Of the thousand cases,
LET were in exact agreement, 537 had an erroneous last bit and 3
had an erroneous penultimate bit." [4, p. 3].
If the last sentence in Jordan's statement were changed to read
"... L7 were in exact agreement, 537 had an erroneous last (hexadecimal)
digit and 5 had an erroneous penultimate digit.", then Jordan's results
are consistent with those of Michael Saunders at Stanford University.
Saunders performed several experiments on an IBM 360 using B = 16,
t =1k, TM=143, £=6 and q =2 . He found examples where the 13-th
hexadecimal digit of the result was in error, but none with errors in

the 12-th digit. Errors of this size are consistent with Theorem 2.

V. Additional Modificaiions to the Algorithm

If one desires the final floating-point result to be correct in
all digits, the following procedure can be used immediately after

calculating So :

1. Form e TL RIS (@ > 1), where e ta,t ...+aq = S0

and each ay has the property that the last ¢ digits of
its mantissa are O .
2. Add -8,)-8,) ...,-a.q to the accumulators.
3. Sum the accumulators in decreasing order. Call the result & .

k. Sy*4 is the full precision result.

17

In problems where N may get arbitrarily large (e.g., numerical
integration), all is not lost. One merely increments an integer every
time a term is added to the accumlators and when the integer is equal
to Bl'\ﬁl-m(‘rﬁ-l) » the following procedure is executed:

l. reset the integer to zero.

2. fori :=0 step luntil 1 do

begin
a:= ai; ai := 03
addtoaccumulators(a)
end

where the procedure addtoaccumulators forms the ail""’aiq
variables, adds q to the integer and adds the aij
(3 = 1,+.45,q) to the accumulators.

Resume the original algorithm.

\
.

18

VI. Conclusion

The generality of the preceding discussion tends to obscure the
simplicity of the algorithm. For this reason, a simple illustrative
example of this technique programmed in Fortran for the IBM 360 is included:

REAL FUNCTION SUM(X,N)

BEQUIVALENCE (IEQ,W)

DIMENSION X(1)

REAL*8 R(43),S8,DBLE

DO 10 I=1,L43
10 R(I)=0.0D0

DO 20 I=1,N

W=ABS(X(I))

IEXP=IEQ/50331648 + 1
C 50331648 IS 3*#(2%*2Lk) WHICH SHIFTS RIGHT 24 BITS AND
C DIVIDES BY 3. ABS GETS RID OF THE SIGN BIT.
20 R(IEXP)=R(IEXP) + DBLE(X(I))

$8=0.0D0

DO 30 I=1,L3
30 58=88 + R(4L-I)

SUM=SNGL(S8)

RETURN

END

This subroutine finds the sum of a vector of short-precision (t = 6)
numbers. Since the 360 used has long-precision (t = 14) floating-point
hardware, it is convenient to use 1l digit accumulators and append 8 zero

digits at the end of each x Thus, Q=1 and £ =8 . The value

i .
N = 43 was chosen to give v =3 . Thus, since B = 16 , the short-
precision result is guaranteed to have full-precision (chopped)

accuracy provided N < 166 = 16,777,216 .

19

This example is typical in that q is usually small (1 or 2) ,
£ is usually chosen for convenience, and T is usually chosen so the
accumulators can be quickly indexed and so vy is sufficiently small.

The algorithm is currently used in several innerproduct routines
(see Malcolm [3] for descriptions of these routines, including running
times). Since efficiency is satisfactory, it may well be feasible to
implement this technigue through a microprogram so that the programmer
can specify by a certain operation code that a summation is to be
performed with a set of these accumulators rather than with a single

accunulator.

VII. Acknowledgment

The author is indebted to Professor George E. Forsythe for his
helpful comments and criticisms of the manuscript. The author would
alsc like to thank Michael Saunders for several enlightening discussions
during the evolution of this algorithm and for his wealth of numerical

counterexamples.

C e T =

v

PP AT

(1]

(2]

(4]

(5]

(6]

BIBLIOGRAPHY

Wilkinson, J. H., Rounding Errors in Algebraic Processes,
Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1963.

Wolfe, J. M., "Reducing Truncation Errors by Programming," CACM,
Vol. 7, No. 6, June 196k, 355-356.

Malcolm, M. A., "A Description and Comparison of Subroutines
for Computing Euclidean Inner Products of Vectors," Technical
Report (to appear), Computer Science Department, Stanford University,

1970.

Jordan, D. F., "ANL F154S - DOTP, Extra-Precision Accumulating
Inner Product," Argonne National Laboratory, Applied Mathematics
Division, System/360 Library Subroutine, Argonne, Illinois,
November, 1967.

Mpller, Ole, "Quasi Double-precision in Floating Point Addition,"
BIT, 5 (1965), 37-50.

Knuth, D. E., "Seminumerical Algorithms," The Art of Computer
Programming, Vol. 2, Reading, Mass.: Addison-Wesley Publishing

Co., 1969.

21l

r Unclasgified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abatract and indexing annotation musxt be entered when the averell repert Is classified)

I ORIGINATING ACTIVITY (Corporete author) 28. REPOART SECURITY CLASSIFICATION
Computer Science Department Unclassified oY
Stanford University 28. GmouP
Stanford, California 94305 SRR

3 REPORY TITLE

AN ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS
!' WITH SMALL RELATIVE ERROR O

1 . 4 DESCRIPTIVE NOTES (Type of report and inclusive dates)
Manuscript for Publication (Technical Report)

5 AUTHOR(S) (Frrst name, middle initial, last name)

Michael Malcolm <
6 MEPORTYT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS

June 1970 22 6 :
o CONTRACY OR GRANY NO 98. ORIGINATON'S AEPORT NUMBE RIS}

NO0O1 11;67-A-0112-0029

PRCOCJECT N

STAN-CS-70-163
NR 04L-211 :
c.). OTHER REPORT NO(S) (Any other numbers that may be assigned
this report) ‘
d. none

10. DISTRIBUTION STATEMENT

Releasable without limitations on dissemination.

1t SUPPLEMENTANY NOTES 12. SPONSORING MILITARY ACTIVITY

L, Office of Naval Research

13 ABSTRACY

~ A practical algorithm for floating-point accumulation is presented.
Through the use of multiple accumulators, errors due to cancellation
are avoided. An example in Fortran is included. An error analysis
providing a sharp bound on the relative error is also given.

DD /°™.1473 (PAGE 1)

28
r

Unclassified
14. LiINK A LINR & LINR €
KEY WORDS
aoLt wr ROLE LAJ ROLE LAS
Floating point arithmetic
error analysis
DD " NoV 00‘473 (BACK) Unclassified
(PAGE 2) Security Classification

e A 0 o i Lo el

